
manuscript No.
(will be inserted by the editor)

Formalization of an Efficient Representation of Bernstein
Polynomials and Applications to Global Optimization

César Muñoz · Anthony Narkawicz

Received: date / Accepted: date

Abstract This paper presents a formalization in higher-order logic of an ef-
ficient representation of multivariate Bernstein polynomials. Using this repre-
sentation, an algorithm for finding lower and upper bounds of the minimum
and maximum values of a polynomial has been formalized and verified correct
in the Prototype Verification System (PVS). The algorithm is used in the def-
inition of proof strategies for formally and automatically solving polynomial
global optimization problems.

1 Introduction

Many engineering problems require determining whether, given bounds on the
variables of a multivariate polynomial, the output values of the polynomial
always fall within a particular range. These types of problems are called poly-
nomial global optimization problems. For example, a common problem used as
a test for global optimization algorithms is the Heart Dipole problem [20]. This
problem can be reduced to minimizing the following polynomial on variables
x1 ∈ [−0.1, 0.4], x2 ∈ [0.4, 1], x3 ∈ [−0.7,−0.4], x4 ∈ [−0.7, 0.4], x5 ∈ [0.1, 0.2],
x6 ∈ [−0.1, 0.2], x7 ∈ [−0.3, 1.1], and x8 ∈ [−1.1,−0.3]:

−x1x
3
6 + 3x1x6x

2
7 − x3x

3
7 + 3x3x7x

2
6 − x2x

3
5 + 3x2x5x

2
8 − x4x

3
8+

3x4x8x
2
5 − 0.9563453.

(1)

The minimum of the polynomial over this range is approximately -1.7434. The
tools presented in this paper can be used to automatically and formally prove
that that this polynomial always takes values greater than -1.7435 and that it
achieves a value less than -1.7434 in this range.

NASA Langley Research Center, Hampton, VA 23681, USA.
Authors are listed in random order.
E-mail: {Cesar.Munoz,Anthony.Narkawicz}@nasa.gov

2 César Muñoz, Anthony Narkawicz

Global optimization problems appear in critical applications such as air
traffic conflict detection and resolution algorithms [12], floating point analy-
sis [6], and uncertainty and reliability analysis of dynamic and control sys-
tems [4], [9]. Finding precise bounds to the minimum and maximum values of
a function is fundamental to the safety of these applications.

Polynomial global optimization belongs to the category of non-linear arith-
metic problems. Higher-order logic based theorem provers such as Coq and
HOL Light, and specialized theorem provers such as MetiTarski and RAHD
have integrated decision procedures for non-linear arithmetic based on quan-
tifier elimination via cylindrical algebraic decomposition (CAD) [1,14,15,19].
Although these procedures can handle formulas with complicated logical struc-
tures and, in some cases, transcendental functions, CAD is practical for poly-
nomials with a small number of variables. Verification techniques based on
CAD are currently not able to handle the polynomial in Formula (1).

Bernstein polynomials, which are related to Bézier curves, can be used to
determine tight bounds on the range of a multivariate polynomial over a closed
rectangle. Hence, they are well-known tools for global optimization [7, 8] and
numerical approximation [13]. In the context of formal methods, single and
multivariate Bernstein polynomials have been formalized in the Coq theorem
prover [3, 23]. In [23], properties of multivariate Bernstein polynomials, in-
cluding differentiation and integration, have been mechanically verified. That
work also includes strategies for solving global optimization problems based
on a branch-and-bound algorithm. However, the correctness of that algorithm
is not formally proved in Coq. In [3], a mechanized proof of an algorithm for
computing Bernstein coefficients is presented. That algorithm is used to for-
mally prove a criterion for the existence of a root of single variable separable
polynomials in a bounded interval.

This paper presents a formalization of a representation of Bernstein polyno-
mials in the higher-order logic of the Prototype Verification System (PVS) [17].
Based on this representation, algorithms for global optimization are formalized
and verified in PVS. These algorithms are based on recent branch and bound
techniques [20] and clever data structures for representing polynomials [21]
that have made Bernstein polynomials efficient tools for global optimization.
The formally verified algorithms are the building blocks of proof strategies
for mechanically and automatically finding lower and upper bounds for the
minimum and maximum values of a polynomial and solving simply quantified
polynomial inequalities. As far as the authors know, the algorithms presented
in this paper are the first algorithms for multivariate global optimization based
on Bernstein polynomials that have been completely formally verified in an au-
tomated theorem prover, in this case PVS.

The rest of the paper is organized as follows. Section 2 gives a general
overview of multivariate Bernstein polynomials and their main properties. The
formalization of the polynomial representation and the algorithms for global
optimization are presented in sections 3 and 4, respectively. Section 5 presents
automated strategies for solving polynomial global optimization problems in

Formalization of an Efficient Representation of Bernstein Polynomials 3

PVS and illustrates their use with a few examples. The last section concludes
this paper.

The formal development presented in this paper is electronically available
from http://shemesh.larc.nas.gov/people/cam/Bernstein. All theorems
presented in this paper are formally verified in PVS. For readability, standard
mathematical notation is used throughout this paper. The reader is referred
to the formal development for implementation details.

2 Bernstein Polynomials

This section introduces multivariate Bernstein polynomials and presents their
main properties. All properties presented in this section have been formally
proved in PVS for both univariate and multivariate polynomials. Later sections
in this paper provide the actual statements of these properties in PVS. In order
to distinguish the mathematical properties from the formal theorems in PVS,
the former are called propositions and the later are called theorems. The formal
proofs closely follow the proofs presented here.

Tuples will be typed in lowercase boldface and subindices from 0 to m−1,
where m > 0, are used to denote particular elements of an m-tuple, e.g.,
aaa = (a0, . . . , am−1). Given a positive natural number m, the order < between
m-tuples is defined by aaa < bbb if and only if aj < bj for all 0 ≤ j < m. Similarly,
the order ≤ between m-tuples is defined by aaa ≤ bbb if and only if aj ≤ bj for all
0 ≤ j < m.

A bounded box [aaa,bbb], where aaa < bbb, denotes the set of m-tuples greater than
or equal to aaa and less than or equal to bbb. The box [000,111], where 000 = (0, . . . , 0)
and 111 = (1, . . . , 1), is called the unit box.

Let iii be an m-tuple of natural numbers and xxx be an m-tuple of variables
over R. The product

xxxiii = xi0
0 · · ·x

im−1
m−1

is called a multivariate monomial. The m-tuple iii is called the index of the
monomial xxxiii. A multivariate polynomial of degree nnn is a finite sum of the form

p(xxx) =
∑
iii≤nnn

ciii xxx
iii,

where the elements ciii ∈ R are called the coefficients of p. Such a polynomial
p can be viewed as a function from Rm into R.

Several properties in this section are given for polynomials on the unit
box. The following proposition states that any multivariate polynomial on an
arbitrary box can be transformed into a polynomial on the unit box.

Proposition 1 Let [aaa,bbb] be a bounded box, p(xxx) =
∑

iii≤nnn ciii xxx
iii, and σ : [000,111]→

[aaa,bbb] be defined by
σ(xxx)j = aj + xj(bj − aj).

4 César Muñoz, Anthony Narkawicz

For all xxx ∈ [000,111], p(σ(xxx)) = p∗(xxx), where p∗(xxx) =
∑

kkk≤nnn rkkk xxx
kkk and

rkkk =
∑

kkk≤iii≤nnn

ciii

m−1∏
j=0

(
ij
kj

)
(bj − aj)kja

ij−kj

j .

Furthermore, since σ is a bijection, for all yyy ∈ [aaa,bbb], p(yyy) = p∗(σ−1(yyy)).

Proof By the binomial theorem,

p(σ(xxx)) =
∑
iii≤nnn

ciii

m−1∏
j=0

(aj + xj(bj − aj))ij

=
∑
iii≤nnn

ciii

m−1∏
j=0

ij∑
kj=0

(
ij
kj

)
(bj − aj)kja

ij−kj

j xkj

=
∑
iii≤nnn

∑
kkk≤iii

ciii

m−1∏
j=0

(
ij
kj

)
(bj − aj)kja

ij−kj

j xkj

=
∑
kkk≤nnn

(∑
kkk≤iii≤nnn

ciii

m−1∏
j=0

(
ij
kj

)
(bj − aj)kja

ij−kj

j

)
xkj

= p∗(xxx).

2.1 Bernstein Basis

A Bernstein polynomial is a multivariate polynomial of the form

p(xxx) =
∑
iii≤nnn

b̂iiiBnnn,iii(xxx), (2)

where b̂iii ∈ R and

Bnnn,iii(xxx) =
m−1∏
j=0

(
nj

ij

)
x

ij

j (1− xj)nj−ij . (3)

The coefficients b̂iii are called the Bernstein coefficients of p.
The multivariate polynomials Bnnn,iii(xxx) in Formula (3) form a basis for the

vector space of polynomials of degree nnn. As the following proposition states,
any polynomial can be written as a polynomial in Bernstein form by a simple
transformation.

Proposition 2 Any multivariate polynomial p(xxx) =
∑

iii≤nnn ciii xxx
iii can be writ-

ten in Bernstein form as p(xxx) =
∑

kkk≤nnn b̂kkk Bnnn,kkk(xxx), where

b̂kkk =
∑
iii≤kkk

(
ciii

m−1∏
j=0

(
kj

ij

)(
nj

ij

)).

Formalization of an Efficient Representation of Bernstein Polynomials 5

Proof The trinomial revision formula states that
(
k
i

)(
n
k

)
/
(
n
i

)
=
(
n−i
k−i

)
for all

natural numbers i, k, and n such that i ≤ k ≤ n. Thus, if iii and nnn are m-
tuples of natural numbers such that iii ≤ nnn, then for all j < m, by the binomial
theorem,

x
ij

j = x
ij

j (xj + (1− xj))nj−ij

= x
ij

j

nj−ij∑
kj=0

(
nj − ij
kj

)
x

kj

j (1− xj)nj−ij−kj

=
nj∑

kj=ij

(
nj − ij
kj − ij

)
x

kj

j (1− xj)nj−kj

=
nj∑

kj=0

(
kj

ij

)(
nj

ij

) ((nj

kj

)
x

kj

j (1− xj)nj−kj
)

Thus, the multivariate monomial xxxiii can be written in Bernstein form as fol-
lows.

xxxiii =
m−1∏
j=0

(nj∑
kj=0

(
kj

ij

)(
nj

ij

) ((nj

kj

)
x

kj

j (1− xj)nj−kj

))

=
∑
kkk≤nnn

(m−1∏
j=0

(
kj

ij

)(
nj

ij

)) Bnnn,kkk(xxx).

The result therefore follows from the fact that the property to be proved is
linear. ut

2.2 Bernstein Properties

A key result that makes Bernstein polynomials useful for proving polynomial
inequalities is the coefficients of a Bernstein polynomial provide lower and
upper bounds for the values of the polynomial over the unit box.

Proposition 3 Let p(xxx) =
∑

iii≤nnn b̂iiiBnnn,iii(xxx) be a Bernstein polynomial, r be
a real number, and < be a real order in {≤, <,≥, >}. If b̂iii < r, for all iii ≤ nnn,
then p(xxx) < r, for all xxx ∈ [000,111].

Proof It can be easily proved by induction on m that
∑

iii≤nnn Bnnn,iii(xxx) = 1 for
all xxx such that 000 ≤ xxx ≤ 111. In that argument, the base case follows from the
binomial theorem:

∑
i0≤n0

Bn0,i0(x) =
∑

i0≤n0

(
n0

i0

)
xi0

0 (1− x0)n0−i0 = (x+ (1− x))n0 = 1.

6 César Muñoz, Anthony Narkawicz

The inductive step follows from the binomial theorem as well. If b̂iii < r for all
iii ≤ nnn, then since Bnnn,iii(xxx) ≥ 0 for all xxx such that 000 ≤ xxx ≤ 111,

∑
iii≤nnn

b̂iiiBnnn,iii(xxx)

 <
∑

iii≤nnn

r Bnnn,iii(xxx)

 = r.

ut

By Proposition 3, given a Bernstein polynomial p(xxx) =
∑

iii≤nnn b̂iiiBnnn,iii(xxx),
the minimum (resp., maximum) Bernstein coefficient is a lower (resp., upper)
bound estimate for the minimum (resp., maximum) value attained by p on the
unit box. That is,

min
iii≤nnn

b̂iii ≤ min
xxx∈[000,111]

p(xxx),

max
xxx∈[000,111]

p(xxx) ≤ max
iii≤nnn

b̂iii.
(4)

Another useful property of a polynomial in Bernstein form is that the
values of the function at the endpoints of the unit box are coefficients of the
polynomial. Let nnn be an m-tuple of natural numbers. The set Cnnn of m-tuples of
natural numbers denotes the endpoint indices of nnn and it is defined as follows.

Cnnn = {iii ≤ nnn | ∀ 0 ≤ j < m : ij = 0 or ij = nj}. (5)

Proposition 4 Let xxx be an element of Rm such that xj = 0 or xj = 1 for all
0 ≤ j < m. Given an m-tuple nnn of natural numbers define iii ∈ Cnnn by ij = 0
if xj = 0 and ij = nj if xj = 1. If the Bernstein polynomial p is defined by
Formula (2), then p(xxx) = b̂iii.

Proof It can be seen that for all kkk ≤ nnn, with kkk 6= iii, Bnnn,kkk(xxx) = 0. Thus,
p(xxx) = b̂iiiBnnn,iii(xxx). Since

(
nj

ij

)
= 1 for all 0 ≤ j < m, it also follows that

Bnnn,iii(xxx) = 1. ut

By Proposition 4, given a Bernstein polynomial p(xxx) =
∑

iii≤nnn b̂iiiBnnn,iii(xxx),
the minimum (resp., maximum) Bernstein coefficient at an endpoint index is
an upper (resp., lower) bound estimate for the minimum (resp., maximum)
value attained by p on the unit box. That is,

min
xxx∈[000,111]

p(xxx) ≤ min
iii∈Cnnn

b̂iii,

max
iii∈Cnnn

b̂iii ≤ max
xxx∈[000,111]

p(xxx).
(6)

Formalization of an Efficient Representation of Bernstein Polynomials 7

2.3 Domain Subdivision

The reciprocal implication of Proposition 3 does not hold in general, i.e., the
fact that a polynomial inequality holds on the unit box does not imply that
the Bernstein coefficients of the polynomial satisfy the same inequality. In
particular, the lower and upper bounds of the minimum and maximum values
of a polynomial on the unit box given by formulas (4) and (6) are not always
exact.

There is, however, a method that can be used to significantly improve the
accuracy of the estimates for the minimum and maximum values of a multi-
variate polynomial p in a bounded box [aaa,bbb]. The basic idea is to subdivide
[aaa,bbb] into two boxes by picking a variable xj , where j < m, and considering the
case where aj ≤ xj ≤ aj+bj

2 separately from the case where aj+bj

2 ≤ xj ≤ bj .
This method can be used recursively to compute arbitrarily precise bounds of
the minimum and maximum values of the polynomial on [aaa,bbb].

An important feature of this subdivision method is that the Bernstein
coefficients arising from the polynomial on the two subdivided intervals can
be computed directly from the Bernstein coefficients of the original polynomial.

The notation aaa with [j ← k], where j < m and k ∈ R, denotes the m-tuple
that is equal to aaa in every index, except in j where it has the value k. Since the
functions DL(y) = y

2 and DR(y) = y+1
2 are bijections from [0, 1] into [0, 1

2] and
[12 , 1], respectively, the Bernstein coefficients of a polynomial p on the boxes
[000,111 with [j ← 1

2]] and [000 with [j ← 1
2],111] are the Bernstein coefficients of the

polynomials
pL(xxx) = p(xxx with [j ← DL(xj)]),

pR(xxx) = p(xxx with [j ← DR(xj)]),
(7)

respectively.
There is an algorithm, called the sweep procedure [8], that is commonly

used to compute the Bernstein forms of pL and pR. In this paper, a simpler
algorithm is presented where the Bernstein coefficients are computed by ex-
panding the definitions in Formula (7). Both this algorithm and the sweep
procedure have been implemented in PVS and proved correct for both the
univariate and multivariate cases.

Proposition 5 Let p(xxx) =
∑

iii≤nnn b̂iiiBnnn,iii(xxx) be a Bernstein polynomial. For
all j < m, pL(xxx) =

∑
kkk≤nnn b̂Lkkk Bnnn,kkk(xxx), where

b̂Lkkk =
kj∑

r=0

1
2kj

(
kj

r

)
b̂kkk with [j←r],

and pR(xxx) =
∑

kkk≤nnn b̂Rkkk Bnnn,kkk(xxx), where

b̂Rkkk =
nj−kj∑
r=0

1
2nj−kj

(
nj − kj

r

)
b̂kkk with [j←nj−r].

8 César Muñoz, Anthony Narkawicz

Proof In the left case, it is noted that for all polynomials q(xxx) = Bnnn,iii(x),
q(xxx with [j ← xj

2]) is given by(
nj

ij

)(xj

2

)ij
(

1−
(xj

2

))nj−ij ∏
s<m,s6=j

(
ns

is

)
xis

s (1− xs)ns−is .

It can be proved using the binomial theorem and the trinomial revision formula
that(

nj

ij

)(xj

2

)ij
(

1−
(xj

2

))nj−ij

=
nj∑

kj=ij

1
2kj

(
kj

ij

)(
nj

kj

)
x

kj

j (1− xj)nj−kj .

From this, it follows immediately that

q(xxx with [j ← xj

2
]) =

∑
iii≤kkk≤iii with [j←nj]

1
2kj

(
kj

ij

)
Bnnn,kkk(xxx). (8)

Thus, if p(xxx) =
∑

iii≤nnn b̂iiiBnnn,iii(xxx), then

p(xxx with [j ← xj

2
]) =

∑
iii≤nnn

b̂iii ∑
iii≤kkk≤(iii with [j←nj])

1
2kj

(
kj

ij

)
Bnnn,kkk(xxx)

=
∑
kkk≤nnn

 kj∑
r=0

1
2kj

(
kj

r

)
b̂kkk with [j←r]

 Bnnn,kkk(xxx).

The right case can be reduced to the left case as follows.

p(xxx with [j ← xj + 1
2

]) = p(xxx with [j ← 1− 1− xj

2
])

=
∑
kkk≤nnn

b̂kkk with [j←nj−kj]Bnnn,kkk(xxx with [j ← 1− xj

2
]), from definition of Bnnn,kkk.

The proof continues by applying Formula (8) to the case where the variable
xj is replaced by 1− xj ,

p(xxx with [j ← xj + 1
2

]) =

=
∑
kkk≤nnn

 kj∑
r=0

1
2kj

(
kj

r

)
b̂kkk with [j←nj−r]

Bnnn,kkk(xxx with [j ← 1− xj])

=
∑
kkk≤nnn

nj−kj∑
r=0

1
2nj−kj

(
nj − kj

r

)
b̂kkk with [j←nj−r]

Bnnn,kkk(xxx with [j ← xj])

ut

Formalization of an Efficient Representation of Bernstein Polynomials 9

Proposition 5 can be used to improve the accuracy of the estimates for the
minimum and maximum values of a Bernstein polynomial p on the unit box.
This result is captured in the following proposition, the proof of which follows
directly from propositions 3 and 5.

Proposition 6 Let p(xxx) =
∑

iii≤nnn b̂iiiBnnn,iii(xxx) be a Bernstein polynomial, r be
a real number, and < be a real order in {≤, <,≥, >}. If b̂Liii < r and b̂Riii < r,
for all iii ≤ nnn, then p(xxx) < r, for all xxx ∈ [000,111].

2.4 Solving Simply Quantified Polynomial Inequalities

Proposition 1 enables the use of propositions 3 and 4 for polynomials, not
just on the unit box, but on any bounded box. In particular, the minimum
and maximum values of a polynomial p in the bounded box [aaa,bbb] satisfy the
inequalities

min
iii≤nnn

b̂iii ≤ min
xxx∈[aaa,bbb]

p(xxx) ≤ min
iii∈Cnnn

b̂iii,

max
iii∈Cnnn

b̂iii ≤ max
xxx∈[aaa,bbb]

p(xxx) ≤ max
iii≤nnn

b̂iii,
(9)

where the Bernstein coefficients b̂iii are given by Proposition 2 for the polyno-
mial p∗ defined in Proposition 1. It is usually the case that these estimates are
not exact. For example, while it may be true that p(xxx) > 0 for all xxx ∈ [aaa,bbb],
it may not be true that miniii≤nnn b̂iii > 0. In this case, Proposition 6 can be re-
cursively applied to compute bounds that are precise to any required approx-
imation. This is the key idea for developing a procedure that solves simply
quantified polynomial inequalities on bounded boxes.

To check whether the universally quantified polynomial inequality

∀xxx ∈ [aaa,bbb] : p(xxx) < r, (10)

holds or not, and if not to find a counterexample, the polynomial p, for xxx ∈
[aaa,bbb], is first translated into the polynomial p∗, for xxx ∈ [000,111], as defined in
Proposition 1. Then, the following procedure is used.

1. Compute the Bernstein coefficients b̂iii, for iii ≤ nnn, of p∗.
2. If for all iii ≤ nnn, b̂iii < r, then, by Proposition 3, the polynomial inequality
p∗(xxx) < r holds for all xxx ∈ [000,111].

3. If there is iii ∈ Cnnn such that ¬(b̂iii < r), then, by Proposition 4, the polynomial
inequality p∗(xxx) < r does not hold for xxx ∈ [000,111] defined as xj = 0 if ij =
0 and xj = 1 if ij = nj , for 0 ≤ j < m.

4. Otherwise, chose any 0 ≤ j < m and recursively apply this procedure to
prove that p∗(xxx with [j ← xj

2]) < r and p∗(xxx with [j ← xj+1
2]) < r.

(a) If both statements hold, then, by Proposition 6, the polynomial inequal-
ity p∗(xxx) < r holds for all xxx ∈ [000,111].

(b) If the first statement does not hold for some xxx (returned in Step 3), then
the polynomial inequality p∗(xxx) < r does not hold for xxx with [j ← xj

2].

10 César Muñoz, Anthony Narkawicz

(c) If the second statement does not hold for some xxx (returned in Step 3),
then the polynomial inequality p∗(xxx) < r does not hold for xxx with [j ←
xj+1

2].

If the procedure above states that the polynomial inequality p∗(xxx) < r
holds for all xxx ∈ [000,111], then, by Proposition 1, Formula (10) holds. If the
procedure above states that the polynomial inequality p∗(xxx) < r does not hold
for some xxx ∈ [000,111], then Formula (10) does not hold for yyy ∈ [aaa,bbb] defined as
yj = aj + xj · (bj − aj), for 0 ≤ j < m.

To check whether the existentially quantified polynomial inequality ∃xxx ∈
[aaa,bbb] : p(xxx) < r holds or not, i.e., whether p(xxx) < r is satisfiable or not, and
if so to find a witness, the same procedure is used with the negated relation.

The procedure given in this section does not necessarily terminate. Further-
more, due to the subdivision algorithm in Step 4, its complexity is exponential
in the number of variables. However, recent advances in polynomial representa-
tion and heuristics for the selection of the variable to subdivide in Step 4 make
this algorithm practical even for polynomials with several variables. Section 3
presents a formalization of an efficient representation of multivariate Bernstein
polynomials. Using this formalization, algorithms for finding lower and upper
bounds of the minimum and maximum values of a polynomial are described
in Section 4. These algorithms have been specified and proved correct in PVS.
They are the building blocks of automated proof strategies in PVS for solving
global optimization problems. Section 5 illustrates the use of these strategies.

3 Formalization of Multivariate Polynomials

Smith has introduced a representation of Bernstein polynomials that can in-
crease the efficiency of global optimization algorithms for sparse polynomi-
als [21]. A sparse polynomial is one where the ratio of the actual number of
monomials and the total number of possible monomials is small. In the context
of formalized mathematics, Smith’s representation also has the advantage of
reducing multivariate polynomial properties to properties of polynomials in
one variable. While Smith’s representation is stated in [21] as a representa-
tion of Bernstein polynomials, the development presented in this paper uses
Smith’s representation for both Bernstein polynomials and standard polyno-
mials. With this representation, domain reduction and subdivision respect and
preserve the structures of the represented polynomials.

3.1 Smith’s Representation

Smith’s representation of a polynomial, in either Bernstein or standard form,
is a finite sum of the form

p(xxx) =
t−1∑
k=0

ck

m−1∏
j=0

pk,j(xj), (11)

Formalization of an Efficient Representation of Bernstein Polynomials 11

where, for 0 ≤ k < t and 0 ≤ j < m, ck ∈ R and pk,j is a single variable
polynomial, in either Bernstein or standard form. A multivariate polynomial
p(xxx) =

∑
iii≤nnn ciii xxx

iii can be written using this form, since a monomial xxxiii is

equal to
∏m−1

k=0 x
ij

j and, therefore, p(xxx) can be written as
∑t−1

k=0 ck
∏m−1

j=0 x
ij

j ,
where t is the number of monomials in p.

One advantage of this representation of polynomials is that domain reduc-
tion and subdivision algorithms can be decomposed into separate cases for
each variable. In the case of domain reduction, a multivariate polynomial p
on a bounded box [aaa,bbb] that is written in the form of Formula (11) can be
translated into a polynomial on the unit box by simply translating each poly-
nomial pr,j to a single variable polynomial on the unit interval [0, 1]. Verifying
the resulting translation algorithm can be easily reduced to proving that the
algorithm is correct for single variable polynomials.

Similarly, given a Bernstein polynomial p written in the form of For-
mula (11), the polynomials pL(xxx) and pR(xxx) of Formula (7) in Section 2 only
affect the j-th variable, so the representations of these polynomials can be
computed by subdividing the domain of the j-th polynomial in each product
pk,0(x0) · · · pk,m−1(xm−1). Thus, verifying this algorithm also reduces to prov-
ing correctness only for single variable polynomials. This makes this represen-
tation of both standard and Bernstein polynomials appealing for applications
in theorem proving.

3.2 A Formal Representation of Polynomals

Smith’s representation of polynomials can be written in formal mathematical
language, such as the specification language of PVS, as follows. A single vari-
able polynomial is represented by a tuple 〈A,n〉, where A is a function from
the natural numbers into the real numbers, i.e., A : N→ R, and n is the degree
of the polynomial. To evaluate the polynomial, it suffices to define A(i) = 0
whenever i is greater than n. In particular, there is an evaluation function
eval that has A and n as parameters and it is defined by

eval(A,n)(x) =
n∑

i=0

A(i)xi,

for x ∈ R. There is similarly a Bernstein evaluation function evalbern defined
by

evalbern(A,n)(x) =
n∑

i=0

A(i)
(
n

i

)
xi(1− x)n−i.

In Section 2, the degree of a multivariate polynomial and the multivariables
are given by m-tuples, where m is the number of variables. In the formal
development, degree and multivariable m-tuples are represented by functions
N→ N and N→ R, respectively, that return 0 for values greater than or equal
to m. If aaa and bbb are functional terms representing m-tuples, the order aaa < bbb is

12 César Muñoz, Anthony Narkawicz

defined as aaa(j) < bbb(j), for all j ≥ 0. Similarly, aaa ≤ bbb is defined as aaa(j) ≤ bbb(j),
for all j ≥ 0.

Using Smith’s representation, a multivariate monomial is seen as a product
of single variable monomials. Formally, a multivariate monomial is represented
by a triple 〈AAA,nnn,m〉, where AAA is function from the natural numbers into sin-
gle variable polynomial functions, i.e., AAA : N → (N → R), nnn is the degree of
the multivariate polynomial, and m is the number of variables. The function
evalprod, which evaluates a product of polynomials, is defined by

evalprod(AAA,nnn,m)(xxx) =
m−1∏
j=0

eval(AAA(j),nnn(j))(xxx(j)),

where xxx : N → R is a multivariable. Similarly, there is an evaluation function
evalbernprod for products of Bernstein polynomials defined by

evalbernprod(AAA,nnn,m)(xxx) =
m−1∏
j=0

evalbern(AAA(j),nnn(j))(xxx(j)).

Finally, a multivariate polynomial is represented by a quintuple 〈ααα,nnn,ccc, t,m〉,
where ααα is a function from the natural numbers into multivariate monomial
functions, i.e., ααα : N → (N → (N → R)), nnn is the degree of the multivariate
polynomial, ccc : N → R is such that ccc(k), for 0 ≤ k < t, is the coefficient of
the k-th multivariate monomial, t is the number of multivariate monomials,
and m is the number of variables. The function evalmulti, which evaluates a
multivariate polynomial, is defined by

evalmulti(ααα,nnn,ccc, t,m)(xxx) =
t−1∑
k=0

ccc(k) · evalprod(ααα(k),nnn,m),

where xxx : N→ R is a multivariable. As above, there is an evaluation function
evalmultibern for multivariate Bernstein polynomials defined by

evalmultibern(ααα,nnn,ccc, t,m)(xxx) =
t−1∑
k=0

ccc(k) · evalbernprod(ααα(k),nnn,m),

where xxx : N→ R is a multivariable.
The formalization presented here strongly favors functional terms where

the domain is the full set of natural numbers even when the domain of the
function is bounded, e.g., m-tuples. The authors have found that this design
choice greatly simplifies the formal development. The fact that the domain of a
function is bounded is taken care of through the application of sums, products,
and iterators, which in PVS are defined for functions whose domains are the
natural numbers.

The development presented in this paper does not consitute a deep embed-
ding of multivariate polynomials. In particular, neither a formal type of multi-
variate polynomials nor algebraic operators on multivariate polynomials have

Formalization of an Efficient Representation of Bernstein Polynomials 13

been defined. In this paper, notations such as 〈A,n〉 for single variable poly-
nomials and similar expressions for multivariate monomials and multivariate
polynomials are used for convenience but they are not explicitly represented
in the formalization. As noted above, one of the advantages of Smith’s repre-
sentation is that it enables the implementation of algorithms for multivariate
polynomials using single variable polynomials. Hence, a deep-embedding of
multivariate polynomials would add notational complexity without a clear
benefit.

3.3 Bernstein Basis

Proposition 2 states that any multivariate polynomial can be written as a
multivariate Bernstein polynomial. This can be accomplished for polynomi-
als formalized as in the previous section by first defining a function tobern
that converts single variable polynomials to Bernstein polynomials, and then
using this function to define a similar function tomultibern for multivariate
polynomials. The function tobern takes as input a single variable polynomial
represented by 〈A,n〉 and returns a polynomial function N → R defined as
follows for i ∈ N.

tobern(A,n)(i) =
i∑

k=0

A(k)

(
i
k

)(
n
k

) . (12)

The following theorem presents Proposition 2 as it has been proved in PVS
for the case of single variable polynomials.

Theorem 1 For all A : N→ R, n ∈ N, and x ∈ R,

eval(A,n)(x) = eval(tobern(A,n), n)(x).

The function tomultibern takes as inputs a multivariate polynomial func-
tion ααα : N→ (N→ (N→ R)) and the degree nnn of the multivariate polynomial.
It is defined as follows for k, j ∈ N.

tomultibern(ααα,nnn)(k)(j) = tobern(ααα(k)(j),nnn(j)). (13)

The functions tobern and tomultibern illustrate the use of higher-order logic
in this formalization. In particular, the application tomultibern(ααα,nnn)(k)(j)(i)
has the type R, but the partial application tomultibern(ααα,nnn) has the type
N→ (N→ (N→ R)), which is the type of a multivariate polynomial function.

The following theorem presents Proposition 2 as it has been proved in PVS
for the case of multivariate polynomials. The proof uses Theorem 1.

Theorem 2 For all ααα : N → (N → (N → R)), nnn : N → N, ccc : N → R, t ∈ N,
m ∈ N, and xxx : N→ R,

evalmulti(ααα,nnn,ccc, t,m)(xxx) = evalmultibern(tomultibern(ααα,nnn),nnn,ccc, t,m)(xxx).

14 César Muñoz, Anthony Narkawicz

3.4 Domain Reduction

As noted in Section 3.1, a multivariate polynomial on a bounded box [aaa,bbb]
that is written using Smith’s representation can be translated to a polynomial
on the unit box by simply translating each single-variable polynomial in its
decomposition to the unit interval. In PVS, this is accomplished by first defin-
ing a translation function translate that takes a single variable polynomial
represented by 〈A,n〉 and real numbers r and s as parameters. It is defined as
follows for j ∈ N.

translate(A,n, r, s)(j) = (s− r)j
n∑

i=j

A(i)
(
i

j

)
ri−j .

The function translate translates the single variable polynomial 〈A,n〉 from
the interval [r, s] to the interval [0, 1]. Indeed, the following theorem has been
formally proved in PVS. It is a formal statement of Proposition 1 for the case
of single variable polynomials.

Theorem 3 For all A : N→ R, n ∈ N, r, s ∈ R, with r 6= s, and x ∈ R,

eval(A,n)(r + x(s− r)) = eval(translate(A,n, r, s), n)(x).

As in the case of evaluation, this domain reduction function can be used
to define a domain reduction function translatemulti for multivariate poly-
nomials. It has as parameters a multivariate polynomial function ααα : N →
(N → (N → R)), the degree nnn of the multivariate polynomial, and m-tuples
aaa and bbb represented as functions of type N → R. It returns a function of
type N → (N → (N → R)), corresponding to a new multivariate polynomial
function. The function translatemulti is defined for k ∈ N, i ∈ N by

translatemulti(ααα,nnn,aaa,bbb)(k)(i) = translate(ααα(k)(i),nnn(i), aaa(i), bbb(i)).

The following theorem is proved in PVS using Theorem 3. It presents
Proposition 1 for the case of multivariate polynomials.

Theorem 4 For all ααα : N → (N → (N → R)), nnn : N → N, ccc : N → R,
aaa,bbb : N→ R, with aaa < bbb, t ∈ N, m ∈ N, and xxx ∈ N→ R,

evalmulti(ααα,nnn,ccc, t,m)(xxx∗) =
evalmulti(translatemulti(ααα,nnn,aaa,bbb),nnn,ccc, t,m)(xxx),

where xxx∗(j) = aaa(j) + xxx(j) · (bbb(j)− aaa(j)), for 0 ≤ j < m.

Formalization of an Efficient Representation of Bernstein Polynomials 15

3.5 Domain Subdivision

Since the polynomials pL and pR from Formula 7 only affect the j-th vari-
able of the polynomial p, Smith’s representations of these polynomials can be
computed by only subdividing the j-th polynomial in each product. Hence,
an algorithm for domain subdivision for single variable polynomials can be
used to define an algorithm for multivariate polynomials. Domain subdivision
for single variable polynomials is accomplished by the functions subdivl and
subdivr. These functions take a single variable polynomial 〈A,n〉 as input and
return new polynomial functions of type N → R representing the Bernstein
polynomial form in the subdivided domains. These functions are defined as
follows for i ∈ N.

subdivl(A,n)(i) =
1
2i

i∑
j=0

(
i

j

)
A(j),

subdivr(A,n)(i) =
1

2n−i

n−i∑
j=0

(
n− i
j

)
A(n− j).

(14)

The following theorem presents Proposition 5 for the case of single variable
polynomials.

Theorem 5 For all A : N→ R, n ∈ N, and x ∈ R,

evalbern(subdivl(A,n), n)(x) = evalbern(A,n)(
x

2
),

evalbern(subdivr(A,n), n)(x) = evalbern(A,n)(
x+ 1

2
).

It follows from these equations that if the polynomial 〈A,n〉 corresponds to
the single variable Bernstein polynomial p in the sense that p = evalbern(A,n),
then the polynomials 〈subdivl(A,n), n〉 and 〈subdivr(A,n), n〉 correspond to
p(x

2) and p(x+1
2), respectively.

There are functions subdivlmulti and subdivrmulti that correspond to
subdividing the j-th variable of a multivariate polynomial. These functions
take as inputs a multivariate Bernstein polynomial function ααα : N → (N →
(N → R)), a degree nnn : N → R, and the variable number j for subdivision.
These functions return functions of type N → (N → (N → R)). They are
defined as follows.

subdivlmulti(ααα,nnn, j)(k)(i) =

{
ααα(k)(i) if i 6= j,

subdivl(AAA(k)(j),nnn(j)) otherwise.

subdivrmulti(ααα,nnn, j)(k)(i) =

{
ααα(k)(i) if i 6= j

subdivr(AAA(k)(j),nnn(j)) otherwise.

The following theorem presents Proposition 5 for the case of single variable
polynomials.

16 César Muñoz, Anthony Narkawicz

Theorem 6 For all ααα : N → (N → (N → R)), nnn : N → N, ccc : N → R, t ∈ N,
m ∈ N, and xxx : N→ R,

evalmultibern(ααα,nnn,ccc, t,m)(xxx with [j ← xxx(j)
2

]) =

evalmultibern(subdivlmult(ααα,nnn, j),nnn,ccc, t,m)(xxx).

evalmultibern(ααα,nnn,ccc, t,m)(xxx with [j ← xxx(j) + 1
2

]) =

evalmultibern(subdivrmult(ααα,nnn, j),nnn,ccc, t,m)(xxx).

Thus, the functions subdivlmulti and subdivrmulti compute the Bernstein
expansions of pL and pR, respectively.

3.6 Bernstein Coefficients

In Section 2, the index of a multivariate monomial xi0
0 · · ·x

im−1
m−1 is the m-

tuple (i0, . . . , im−1). In the formal development, the index (i0, . . . , im−1) is
represented by qqq : N → N where qqq(j) = ij for j < m and qqq(j) = 0 for j ≥ m.
Given a multivariate polynomial degree nnn, an index qqq that satisfies qqq(j) = 0
or qqq(j) = nnn(j), for all j, is called an endpoint index of nnn.

If p is a multivariate polynomial such that p(xxx) = evalmulti(ααα,nnn,ccc, t,m)(xxx),
then the coefficient of the monomial at index qqq in p can be computed by the
following function.

multicoeff(ααα,ccc, t,m)(qqq) =
t−1∑
i=0

ccc(i)
m−1∏
j=0

ααα(i)(j)(qqq(j)).

This function also computes the coefficients of a Bernstein polynomial, i.e.,
multicoeff(ααα,ccc, t,m)(qqq) is the coefficient of the Bernstein monomial Bnnn,qqq(xxx)
(Section 2) in the Bernstein polynomial p(xxx) = evalmultibern(ααα,nnn,ccc, t,m)(xxx).

As noted in Section 2.2, the coefficients of a Bernstein polynomial can be
used to find lower and upper bounds to the minimum and maximum values
of a Bernstein polynomial on the unit box. The following result is the formal
statement in PVS of Proposition 3.

Theorem 7 For all ααα : N → (N → (N → R)), nnn : N → N, ccc : N → R, t ∈ N,
m ∈ N, real order < ∈ {≤, <,≥, >}, r ∈ R, and xxx ∈ [000,111], if for all indices
qqq ≤ nnn, multicoeff(ααα,ccc, t,m)(qqq) < r, then

evalmultibern(ααα,nnn,ccc, t,m)(xxx) < r.

The next PVS theorem, which is the formal version of Proposition 4, states
that the function multicoeff can be used to compute values of multivariate
Bernstein polynomials.

Formalization of an Efficient Representation of Bernstein Polynomials 17

Theorem 8 For all ααα : N → (N → (N → R)), nnn : N → N, ccc : N → R, t ∈ N,
m ∈ N, and endpoint index qqq of nnn,

multicoeff(ααα,ccc, t,m)(qqq) = evalmultibern(ααα,nnn,ccc, t,m)(xxx), where

xxx(j) =

{
0 if qqq(j) = 0,
1 if qqq(j) = nnn(j).

4 Verified Algorithms for Polynomial Global Optimization

Given a formalization of multivariate polynomials in a proof assistant, such
as the formalization presented in Section 3, it is straightforward to implement
the procedure presented in Section 2.4 as a tactic/strategy using the theorem
prover’s proof-script language. This approach was initially taken by the au-
thors using the strategy language provided by PVS [2]. The major advantage
of this approach is that since proof-scriptPa languages preserve the logical con-
sistency of theorem provers, strategies do not need to be proved correct. Proofs
built by strategies are correct by construction. However, since proofs built us-
ing the procedure described in Section 2.4 mimic the recursive structure of the
branch-and-prune method, this approach is very inefficient for practical use.

An alternative approach, based on computational reflection [11], was then
followed. The core components of the procedure presented in Section 2.4 are
implemented as functions in the PVS specification language. The function
BernMinmax, described in Section 4.1, computes lower and upper bounds of
the minimum and maximum values of a Bernstein polynomial within the unit
box. The function PolyMinmax, described in Section 4.2, computes range in-
formation for standard multivariate polynomials in arbitrary closed intervals.
The function Bernstein, described in Section 4.4, solves simply quantified
polynomial inequalities. These functions and their correctness properties have
been verified in PVS and are used in automated strategies for solving global
optimization problems. The use of these strategies is illustrated in Section 5.
The basic function BernMinmax is still recursive. However, since it is applied
to concrete ground terms, it can be efficiently executed by the theorem prover
using a ground evaluator.

4.1 Function BernMinmax

The function BernMinmax is presented in Figure 1. It has as basic parameters
a multivariate polynomial 〈ααα,nnn,ccc, t,m〉 in Bernstein form, a maximum recur-
sion depth d ∈ N, and the current recursion depth k < d. Additional inputs
include a function varsel that determines the variable on which to subdivide
at each iteration and which direction to explore first, predicates localex and
globalex on the output type that cause the algorithm to exit locally and
globally, respectively, and an accumulative parameter omm of the same type as
the output value. These inputs are described in Section 4.3.

18 César Muñoz, Anthony Narkawicz

BernMinmax(ααα,nnn,ccc, t,m, d, k, localex, globalex, varsel, omm) : Outminmax =

let

bmm = berncoeffsminmax(ααα,nnn,ccc, t,m)

in

if (k = d) ∨ localex(bmm) ∨ (k > 0 ∧ between?(omm, bmm)) ∨ globalex(bmm) then

bmm

else

let

(left?, j) = varsel(ααα,nnn,ccc, t,m, k),

sl = subdivlmulti(ααα,nnn, j),

sr = subdivrmulti(ααα,nnn, j),

(ααα1,ααα2) = if left? then (sl, sr) else (sr, sl) endif,

σ = if left? then λx.x/2 else λx.(x+ 1)/2 endif,

omm = if k > 0 then combine(omm, bmm) else bmm endif,

k = k + 1,

bmm1 = BernMinmax(ααα1,nnn,ccc, t,m, d, k, localex, globalex, varsel, omm)

in

if globalex(bmm1) then

combine(UpdateOutminmax(bmm1, σ, j), bmm)

else

let

omm = combine(omm, bmm1),

bmm2 = BernMinmax(ααα2,nnn,ccc, t,m, d, k, localex, globalex, varsel, omm),

bmmleft = if left? then bmm1 else bmm2 endif,

bmmright = if left? then bmm2 else bmm1 endif

in

combine(UpdateOutminmax(bmmleft, λx.x/2, j),

UpdateOutminmax(bmmright, λx.(x+ 1)/2, j))

endif

endif

Fig. 1 The function BernMinmax

The function BernMinmax returns a record of type Outminmax, which stores
information about the range of a Bernstein polynomial over the unit box [000,111].
Elements of this type have six fields:

– lbmin: a minimum estimate for the lower bound of the polynomial.
– lbmax: a maximum estimate for the lower bound of the polynomial.
– lbvar: a point in the box [000,111] where the polynomial attains the value

lbmax.
– ubmin: a minimum estimate for the upper bound of the polynomial.
– ubmax: a maximum estimate for the upper bound of the polynomial.

Formalization of an Efficient Representation of Bernstein Polynomials 19

– ubvar: a point in the box [000,111] where the polynomial attains the value
ubmin.

The fields lbmin, lbmax, ubmin, and ubmax are all real numbers, and the fields
lbvar and ubvar are m-tuples of real numbers.

Let p be a polynomial such that p(xxx) = evalmultibern(ααα,nnn,ccc, t,m)(xxx).
The function berncoeffsminmax(ααα,nnn,ccc, t,m) iterates over all possible mono-
mial indices below the degree nnn and computes an element of Outminmax whose
fields satisfy the following properties, with b̂iii = multicoeff(ααα,nnn,ccc, t,m)(iii)
for iii < nnn.

1. lbmin = miniii≤nnn b̂iii.
2. lbmax = miniii∈Cnnn b̂iii.
3. lbvar is a m-tuple representing a value ccc where p(ccc) = lbmax.
4. ubmin = maxiii∈Cnnn b̂iii.
5. ubmax = maxiii≤nnn b̂iii. is the maximum Bernstein coefficient.
6. ubvar is is a m-tuple representing a value ccc where p(ccc) = ubmin.

Assuming that bmm = berncoeffsminmax(ααα,nnn,ccc, t,m), Formula (9) states
that minxxx∈[000,111] p(xxx) is in the closed interval [bmm.lbmin, bmm.lbmax] and that
maxxxx∈[000,111] p(xxx) is in the closed interval [bmm.ubmin, bmm.ubmax].

If a better precision is desired, the function varsel is used to select a
variable to subdivide and a direction (left or right) for the recursive calls. Then,
the domain subdivision functions subdivlmulti and subdivrmulti, presented
in Section 3.5, are used to subdivide the unit box [000,111] into smaller subboxes.
At each subdivision, the function multicoeff is used to compute an element
of Outminmax that stores information about the range of the polynomial on
the given subbox.

After subdividing a variable j in [000,111] using the functions subdivlmulti
and subdivrmulti and applying multicoeff to each subdivision, two ele-
ments bmm1 and bmm2 of Outminmax are produced; one representing range in-
formation for [000,111 with [j ← 1

2]] and the other representing range information
for [000 with [j ← 1

2],111]. Since the points represented by lbvar and ubvar are
computed in a unit box, they must be translated back to the half intervals
from the full interval. There is a function update that takes as parameters a
m-tuple ` of real numbers, a function σ : R→ R, and an index j < m, and it
returns a new m-tuple that is equal to ` in every entry except the j-th entry,
where it is updated by the function σ. Formally,

update(`, σ, j) = ` with [j ← σ(`(j)].

The function update is used to define the function UpdateOutminmax on
elements of Outminmax that updates the j-th element of its fields lbvar and
ubvar.

UpdateOutminmax(bmm, σ, j) = bmm with [lbvar← update(bmm.lbvar, σ, j)]
with [ubvar← update(bmm.ubvar, σ, j)]

20 César Muñoz, Anthony Narkawicz

The two elements of type Outminmax resulting from applying UpdateOutminmax
to omm1 and omm2 are combined into a new element of type Outminmax that
represents range information for the Bernstein polynomial over the unit box.
The function combine(omm1, omm2) returns an element omm that satisfies

1. omm.lbmin = min(omm1.lbmin, omm2.lbmin)
2. omm.lbmax = min(omm1.lbmax, omm2.lbmax)
3. omm.lbvar is either omm1.lbvar or omm2.lbvar, depending on the value of

omm.lbmax
4. omm.ubmin = max(omm1.ubmin, omm2.ubmin)
5. omm.ubmax = max(omm1.ubmax, omm2.ubmax)
6. omm.ubvar is either omm1.ubvar or omm2.ubvar, depending on the value of

omm.ubmin

The correctness property of the function BernMinmax states that it com-
putes an element of type Outminmax that bounds the range of a given Bernstein
polynomial on the unit box. The following theorem has been proved in PVS
by induction on the structure of the definition of BernMinmax. In PVS, the
corresponding induction scheme is generated by the type-checker by restrict-
ing the output type of the function to elements that satisfy the correctness
property. Theorems 7 and 8 are used to prove the base case. The inductive
case is discharged by Theorem 6.

Theorem 9 For all ααα : N → (N → (N → R)), nnn : N → N, ccc : N → R, t ∈
N, m ∈ N, d ∈ N, k ∈ N, with k ≤ d, localex, globalex : Outminmax →
boolean, varsel : N → [boolean, below(m)], and omm : Outminmax, if p =
evalmultibern(ααα,nnn,ccc, t,m) and bmm ∈ Outminmax is given by

bmm = BernMinmax(ααα,nnn,ccc, t,m, d, k, localex, globalex, varsel, omm),

then

1. p(bmm.lbvar) = bmm.lbmax,
2. p(bmm.ubvar) = bmm.ubmin, and
3. bmm.lbmin ≤ p(xxx) ≤ bmm.ubmax,

for all xxx ∈ [000,111].

It is noted that Theorem 9 holds for all possible values of the input pa-
rameters varsel, localex, globalex, and omm. These parameters are added
for practicality and efficiency reasons. They are explained in Section 4.3.

4.2 Function PolyMinmax

The function PolyMinmax computes range information, not on the unit box as
for the algorithm BernMinmax, but on an arbitrary box [aaa,bbb]. The algorithm
works in four steps:

1. Convert the polynomial from the box [aaa,bbb] to the unit box [000,111] using the
function translatemulti from Section 3.4.

Formalization of an Efficient Representation of Bernstein Polynomials 21

PolyMinmax(ααα,nnn,ccc, t,m,aaa,bbb, d, localex, globalex, varsel) =

let

ααα′ = translatemulti(ααα,nnn,aaa,bbb),

ααα′′ = tomultibern(ααα′,nnn),

bsminmax = BernMinmax(ααα′′,nnn,ccc, t,m, d, 0,

localex, globalex, varsel, Emptymm)

in

bsminmax with [lbvar← denormalize(aaa,bbb)(bsminmax.lbvar)]

with [ubvar← denormalize(aaa,bbb)(bsminmax.ubvar)]

Fig. 2 The function PolyMinmax

2. Convert the translated polynomial to a Bernstein polynomial using the
function tomultibern from Section 3.3.

3. Apply BernMinmax to compute an element bmm of Outminmax that gives
range information for the Bernstein polynomial on the unit box.

4. Translate the fields lbvar and ubvar of bmm from [000,111] back to [aaa,bbb] linearly.
This can be accomplished by defining a function denormalize(aaa,bbb) that
maps [000,111] to [aaa,bbb] componentwise. It is given on the j-th component by
x 7→ aj + x · bj .

The function PolyMinmax is defined in Figure 2. The constant element
Emptymm of type Outminmax is defined such that all the numerical fields are 0
and the m-tuples are (0, . . . , 0).

The following correctness property of the function PolyMinmax has been
proved in PVS.

Theorem 10 For all ααα : N → (N → (N → R)), nnn : N → N, ccc : N → R, t ∈ N,
m ∈ N, d ∈ N, localex, globalex : Outminmax→ boolean, and varsel : N→
[boolean, below(m)], if p = evalmulti(ααα,nnn,ccc, t,m) and bmm ∈ Outminmax is
given by

bmm = PolyMinmax(ααα,nnn,ccc, t,m,aaa,bbb, d, localex, globalex, varsel),

then

1. p(bmm.lbvar) = bmm.lbmax,
2. p(bmm.ubvar) = bmm.ubmin, and
3. bmm.lbmin ≤ p(xxx) ≤ bmm.ubmax,

for all xxx ∈ [aaa,bbb].

4.3 Parameters varsel, omm, globalex, and localex

The parameter varsel is used to determine two things: (1) Which variable to
subdivide at each recursive step, and (2) Whether to compute bounds to the
left or the right first in that variable. The algorithm takes as inputs ααα, nnn, ccc, t,

22 César Muñoz, Anthony Narkawicz

m, and k. It returns a pair (left?, var), where left? is a Boolean value and
var < m. The value left? being true means that the given variable should be
subdivided to the left first, and var is a natural number representing the index
of the variable to be subdivided. The most basic example of such a function
is given by varsel(ααα,nnn,ccc, t,m, k) = (true, mod(m, k)), which alternates the
variables and always computes range information on the left interval first.
However, as noted in [18] and [20], there are much more efficient methods for
choosing these variables and directions, including several based on derivatives.
The function varsel is an input to the algorithm in PVS, so it can facilitate
any subdivision scheme. One method that has been implemented in PVS is
called MaxVarMinDir. This method chooses the variable for which the range
between the first and last Bernstein coefficients, when all other variables are
held constant, is greatest.

The parameter omm is used to store the current output of the algorithm.
The function between? tests whether the output bmm at the current recursive
step can contribute anything to the final output of the function once it is
combined. That is,

between?(omm, bmm) = (omm.lbmax ≤ bmm.lbmin ∧
bmm.ubmax ≤ omm.ubmin).

At a given recursive step in the algorithm, if between?(omm, bmm) returns
true, then the output bmm of the current recursive step will not contribute
to the overall output of the function since between?(omm, bmm) implies that
combine(omm, bmm) = omm.

The function BernMinmax is at the core of other algorithms that solve
specific global optimization problems, e.g., finding bounds to the minimum and
maximum values of a polynomial, proving a universally quantified polynomial
inequality, or checking whether a polynomial inequality is satisfiable or not.
Each of these problems has a different termination condition. The predicates
localex and globalex are used to prune the recursion depending on particular
objectives. The predicate localex will be used to exit the algorithm locally
and continue to the next recursive step. While both of these predicates are used
in the algorithm to simply break recursion locally, the predicate globalex will
be chosen so that if recursion breaks because globalex returns true, then every
recursion above will also break, effectively resulting in a global exit from the
algorithm.

For instance, the algorithm can be set to compute bounds on the range of
a polynomial within an arbitrary precision ε > 0 of the actual bounds. This
can be accomplished by defining the predicates

eps localexit(ε)(bmm) = (bmm.lbmax− bmm.lbmin ≤ ε ∧
bmm.ubmax− bmm.ubmin ≤ ε),

eps globalexit(bmm) = false.

In this case, the parameters localex and globalex are instantiated with
eps localexit(ε) and eps globalexit, respectively.

Formalization of an Efficient Representation of Bernstein Polynomials 23

Bernstein(ααα,nnn,ccc, t,m,<, aaa,bbb, d, varsel) : Outcome =

let

bmm = PolyMinmax(ααα,nnn,ccc, t,m,aaa,bbb, d, exit(<), counterex(<), varsel)

in

if exit(<)(bmm) then

IsTrue

elsif counterex(<)(bmm) then

if 0 < 1 then

Counterexample(bmm.ubvar)

else

Counterexample(bmm.lbvar)

endif

else

Unknown

endif

Fig. 3 The function Bernstein

As illustrated in Section 4.4, the function PolyMinmax can also be used to
decide whether the polynomial p satisfies the inequality p(xxx) < 0 for all xxx in
a given box [aaa,bbb]. To accomplish that, the following predicates, parametric in
<, are defined.

exit(<)(bmm) : boolean =
if 0 < 1 then (bmm.ubmax < 0) else (bmm.lbmin < 0) endif

counterex(<)(bmm) : boolean =
if 0 < 1 then ¬(bmm.ubmin < 0) else ¬(bmm.lbmax < 0) endif

The parameters localex and globalex of PolyMinmax are instantiated with
exit(<) and counterex(<), respectively. Thus, once it can be proved on a
subbox that the polynomial inequality is satisfied, i.e., exit(<)(bmm) returns
true for some bmm, the recursion will continue on the next branch of the re-
cursion. On the other hand, if counterex(<)(bmm) returns true, the algorithm
will exit globally since there is a point where the inequality does not hold.

4.4 Function Bernstein

The function Bernstein, defined in Figure 3, has as inputs the data struc-
tures representing a polynomial inequality p(xxx) < 0 in a bounded box [aaa,bbb].
It returns an element of type Outcome with the values Unknown, IsTrue, or
Counterexample(ccc), where ccc ∈ [aaa,bbb].

The correctness property of Bernstein, which has been proved in PVS,
states that if Bernstein returns IsTrue, then the inequality p(xxx) < 0 holds

24 César Muñoz, Anthony Narkawicz

for all xxx ∈ [aaa,bbb]. Furthermore, if the function returns Counterexample(ccc), then
the inequality p(ccc) < 0 does not hold. The function returns Unknown when the
polynomial inequality cannot be proved nor disproved for the given maximum
depth d and variable selection method varsel.

Theorem 11 For all ααα : N → (N → (N → R)), nnn : N → N, ccc : N → R,
t ∈ N, m ∈ N, d ∈ N, and varsel : N → [boolean, below(m)], if p =
evalmulti(ααα,nnn,ccc, t,m) then

1. Bernstein(ααα,nnn,ccc, t,m,<, aaa,bbb, d, varsel) = IsTrue implies

∀xxx ∈ [aaa,bbb] : p(xxx) < 0.

2. Bernstein(ααα,nnn,ccc, t,m,<, aaa,bbb, d, varsel) = Counterexample(ccc) implies

ccc ∈ [aaa,bbb] ∧ ¬(p(ccc) < 0).

4.5 Open and Unbounded Intervals

The function BernMinmax is a simplified version of the algorithm that is imple-
mented in PVS. The actual PVS function provides support for open, half-open,
and, for some types of problems, unbounded intervals.

The mechanism through which the algorithm handles open intervals is a
modification of the algorithm berncoeffsminmax, which computes range in-
formation for the Bernstein coefficients of a polynomial. This modification does
not let the fields lbvar and ubvar of the output, which has type Outminmax,
to be set unless the resulting point is inside the given interval. Thus, the
algorithm can be used to find counterexamples to positivity, nonnegativity,
negativity, and nonpositivity statements in open and half-open intervals.

In the case of unbounded intervals, there is a relatively simple result that
allows a polynomial positivity (and negativity, etc.) problem on an unbounded
interval to be reduced to a slightly stronger problem on a bounded interval.
As a simple example, consider the problem of determining whether p(x) > 0
for all x ∈ (0,∞), where p is a polynomial in one variable. There is a bijective
function (0, 1) 7→ (0,∞) given by x 7→ 1−x

x . Thus, p(x) > 0 for all x > 0 if and
only if p(1−x

x) > 0 for all x ∈ (0, 1). But this second statement is equivalent to
xnp(1−x

x) > 0 for all x ∈ (0, 1), where n is the degree of p. Further, xnp(1−x
x)

can be written as a polynomial in x. Thus, determining whether p(x) > 0
for all x ∈ (0,∞) can be reduced to determining whether q(x) > 0 for all
x ∈ (0, 1), where q is the polynomial such that q(x) = xnp(1−x

x).

5 Strategies

The formal development presented in this paper includes the proof strategies
minmax and bernstein, which are based on the PVS functions PolyMinmax
and Bernstein, respectively. This section illustrates the use of these strategies
to solve polynomial global optimization problems.

Formalization of an Efficient Representation of Bernstein Polynomials 25

5.1 Strategy minmax

In its simplest form, the strategy minmax has as parameter a multivariate
polynomial, which is given either as a string representation or as a location
of an expression in a proof sequent. The strategy finds the minimum and
maximum of the polynomial within a default precession of 1

100 using maximum
depth 100 and the variable selection method MaxVarMinDir. Optional strategy
parameters allows for the user to provide specific precision, maximum depth,
and variable selection method. For instance, given the following proof sequent

{-1} -1 <= x
{-2} x <= 1
{-3} -1 <= y
{-4} y <= 1
|-------

{1} 4*x^2 - (21/10)*x^4 + (1/3)*x^6 + x*y - 4*y^2 + 4*y^4
>= -1.4

the strategy call (minmax (! 1 l)), where (! 1 l) points to the lefthand
side of the formula {1}, i.e., the polynomial 4x2− 21

10x
4 + 1

3x
6 +xy−4y2 +4y4,

results in the following sequent

{-1} PolyMinmax(ααα,nnn,ccc,t,m,aaa,bbb,100,
eps localexit(1/100),eps globalexit,MaxVarMinDir) =

(# lbmax := -258761659 / 251658240,
lbmin := -162446231 / 157286400,
lbvar := (: -23 / 32, 1 / 16 :)
ubmax := 97 / 30,
ubmin := 97 / 30,
ubvar := (: -1, -1 :) #)

{-2} boxbetween?(xxx,aaa,bbb)
{-3} 4*x^2 - (21/10)*x^4 + (1/3)*x^6 + x*y - 4*y^2 + 4*y^4 =

evalmulti(ααα,nnn,ccc,t,m)(xxx)
{-4} -1 <= x
{-5} x <= 1
{-6} -1 <= y
{-7} y <= 1
|-------

{1} 4*x^2 - (21/10)*x^4 + (1/3)*x^6 + x*y - 4*y^2 + 4*y^4
>= -1.4

The strategy minmax first extracts a multivariate polynomial representation
〈ααα,nnn,ccc, t,m〉 from the PVS expression 4∗x2−(21/10)∗x4+(1/3)∗x6+x∗y−4∗
y2+4∗y4 and proves the equality between the two representations, i.e., formula
{-3}, where xxx is the m-tuple (x, y). By default, the order of the variables is
the order of occurrence in the polynomial expression, but the user can specify
a different order using an optional strategy parameter. Then, the strategy
extracts the initial variable boxes from the information in the antecedent of

26 César Muñoz, Anthony Narkawicz

the sequent and proves that aaa ≤ xxx ≤ bbb, i.e., formula {-2}, where aaa and
bbb represent the m-tuple (−1, 1). Finally, the strategy evaluates the ground
expression PolyMinmax(ααα,nnn,ccc, t,m,aaa,bbb, . . .), i..e, formula {-1}. Theorem 10
guarantees that for all x ∈ [aaa,bbb],

−162446231
157286400

≤ p(xxx) ≤ 97
30
,

p(−23
32
,

1
16

) =− 258761659
251658240

,

p(−1,−1) =
97
30
,

where p(xxx) = 4 ∗ x2 − (21/10) ∗ x4 + (1/3) ∗ x6 + x ∗ y− 4 ∗ y2 + 4 ∗ y4. Hence,
in the given variable box, the maximum value of the polynomial is exactly 97

30
and attained at (−1,−1), and the minimum value of the polynomial satisfies

−162446231
157286400

≤ min
xxx∈[aaa,bbb]

p(xxx) ≤ −−258761659
251658240

.

It can be checked that

−258761659
251658240

−−162446231
157286400

=
5761553

1258291200
≤ 1

100
.

Therefore, the value of the polynomial at the point (− 23
32 ,

1
16) is within 1

100 of
the minimum value of the polynomial on the interval.

5.2 Strategy bernstein

The strategy bernstein automatically discharges PVS sequents having one
of the following forms, where p is a multivariate polynomial expression on
variables xxx, [aaa,bbb] is a bounded box, < ∈ {<,≤, >,≥}, and r ∈ R,

1. ` ∀xxx ∈ Rm : xxx ∈ [aaa,bbb] =⇒ p(xxx) < r.
2. xxx ∈ [aaa,bbb] ` p(xxx) < r.
3. ` ∃xxx ∈ Rm : xxx ∈ [aaa,bbb] ∧ p(xxx) < r.

The strategy bernstein does not require any parameters, but, as in the
case of the strategy minmax, optional strategy parameters allow for specific
variable orders, maximum depths, and variable selection methods. Similar
to the strategy minmax, bernstein extracts from the sequent a polynomial
representation 〈ααα,nnn,ccc, t,m〉 and a variable box [aaa,bbb] that satisfy p(xxx) − r =
evalmulti(ααα,nnn,ccc, t,m)(xxx) and aaa ≤ xxx ≤ bbb.

In the case of a universally quantified sequent, i.e., sequent forms 1 and 2,
the ground expression Bernstein(ααα,nnn,ccc, t,m,<, aaa,bbb, d, varsel) is evaluated,
where d and varsel are given maximum depth and variable selection method,
respectively. If the outcome IsTrue is computed, then Theorem 11 is used to
discharge the sequent. If the outcome Counterexample(ccc) is computed, then
it is reported that the polynomial inequality does not hold for xxx = ccc.

Formalization of an Efficient Representation of Bernstein Polynomials 27

In the case of an existentially quantified sequent, i.e., sequent form 3, the
ground expression Bernstein(ααα,nnn,ccc, t,m,¬<, aaa,bbb, d, varsel) is evaluated. If
the outcome Counterexample(ccc) is computed, then sequent is discharged by
instantiating the existential variable xxx with ccc. If the outcome IsTrue is com-
puted, then it is reported that the polynomial inequality does not hold for any
xxx ∈ [aaa,bbb].

5.3 Examples

The rest of this section presents several examples of global optimization theo-
rems that can be automatically discharged with the strategy Bernstein. These
examples are taken from [20] and were originally drawn from [22], where new
exit conditions and methods for range subdivision are tested on particular
problems. These polynomials are typical test problems for global optimization
algorithms since standard tricks, such as initially elminating certain variables,
will not typically work with these problems. Thus, these problems are designed
to push global optimization problems to their limits. The polynomials and the
domains of the associated variables are given below.

– Schwefel:

schwefel(x1, x2, x3) = (x1 − x2
2)2 + (x2 − 1)2 + (x1 − x2

3)2 + (x3 − 1)2,

where x1, x2, x3 ∈ [−10, 10].

– 3-Variable Reaction Diffusion:

rd(x1, x2, x3) = −x1 + 2x2 − x3 − 0.835634534x2(1 + x2),

where x1, x2, x3 ∈ [−5, 5].

– Caprasse’s System

caprasse(x1, x2, x3, x4) = −x1x
3
3 + 4x2x

2
3x4 + 4x1x3x

2
4 + 2x2x

3
4 + 4x1x3+

4x2
3 − 10x2x4 − 10x2

4 + 2,

where x1, x2, x3, x4 ∈ [−0.5, 0.5].

– Adaptive Lotka-Volterra System:

lv(x1, x2, x3, x4) = x1x
2
2 + x1x

2
3 + x1x

2
4 − 1.1x1 + 1,

where x1, x2, x3, x4 ∈ [−2, 2].

28 César Muñoz, Anthony Narkawicz

Problem k1 k2

Schwefel -0.00000000058806 0.00000000058806
Reaction Diffusion -36.7126907 -36.7126

Caprasse -3.1801 -3.18009
Lotka-Volterra -20.801 -20.799

Butcher -1.44 -1.439
Magnetism -0.25001 -0.2499

Heart Dipole -1.7435 -1.7434

Table 1 Constants k1 and k2 for Global Optimization Theorems

– Butcher’s Problem:

butcher(x1, x2, x3, x4, x5, x6) = x6x
2
2 +x5x

2
3−x1x

2
4 +x3

4 +x2
4−

1
3
x1 +

4
3
x4,

where x1 ∈ [−1, 0], x2 ∈ [−0.1, 0.9], x3 ∈ [−0.1, 0.5], x4 ∈ [−1,−0.1],
x5 ∈ [−0.1,−0.05], and x6 ∈ [−0.1,−0.03].

– 7-Variable Magnetism:

magnetism(x1, x2, x3, x4, x5, x6, x7) = x2
1 + 2x2

2 + 2x2
3 + 2x2

4 + 2x2
5 + 2x2

6+

2x2
7 − x1,

where x1, x2, x3, x4, x5, x6, x7 ∈ [−1, 1].

– Heart Dipole:

heart(x1, x2, x3, x4, x5, x6, x7, x8) = −x1x
3
6 + 3x1x6x

2
7 − x3x

3
7+

3x3x7x
2
6 − x2x

3
5 + 3x2x5x

2
8 − x4x

3
8 + 3x4x8x

2
5 − 0.9563453,

where x1 ∈ [−0.1, 0.4], x2 ∈ [0.4, 1], x3 ∈ [−0.7,−0.4], x4 ∈ [−0.7, 0.4],
x5 ∈ [0.1, 0.2], x6 ∈ [−0.1, 0.2], x7 ∈ [−0.3, 1.1], and x8 ∈ [−1.1,−0.3].

For each one of these problems, the following types of theorems are proved
for some k1, k2 ∈ R.

– Theorem p forall: ∀xxx ∈ Rm : xxx ∈ [aaa,bbb] =⇒ p(xxx) ≥ k1.
– Theorem p exists: ∃xxx ∈ Rm : xxx ∈ [aaa,bbb] ∧ p(xxx) ≤ k2.

The constants k1 and k2 are chosen such that k2 − k1 < ε, where ε is a
small positive number. Hence, these theorems imply that both k1 and k2 are
estimates of the global minimum of the polynomial p in the box [aaa,bbb], within
a precision of ε. Table 1 shows the constants k1 and k2 for each problem.

Each of the theorems for the problems listed in Table 1 can be proved in
PVS using the proof strategy (bernstein). Table 2 shows proof times (in
seconds) for each theorem in a MacBook Pro 2.4 GHz Inter Core 2 Duo, 8 GB
of memory. In the case of the universally quantified theorems, a considerable
amount of time is spent in the verification of the equivalence p(xxx) − k1 =
evalmulti(ααα,nnn,ccc, t,m)(xxx). This step requires many symbolic manipulations

Formalization of an Efficient Representation of Bernstein Polynomials 29

Problem
p forall (sec)

p exists (sec)
Full W/O Equiv.

Schwefel 10.23 3.18 1.27
Reaction Diffusion 3.11 0.17 0.21

Caprasse 11.44 1.25 0.01
Lotka-Volterra 4.75 0.23 0.24

Butcher 19.83 0.47 0.43
Magnetism 160.44 82.87 1.71

Heart Dipole 79.68 26.14 14.94

Table 2 Proof Times for Global Optimization Theorems

in PVS and is therefore slow. Thus, the bottleneck in proof speed for these
theorems in PVS is not the execution of the algorithm PolyMinmax but rather
verifying that the polynomial representation is correct. The first column in the
section p forall shows the total time to prove the theorem, and the second
column shows the proof time without checking the equivalence of the polyno-
mial representations. In the case of the existential theorem, the equivalence
does not need to be proved. This is because the algorithm PolyMinmax pro-
vides points, lbvar and ubvar, where the polynomial attains the values lbmax
and ubmin, respectively. Thus, the final step in the existential proofs is an in-
stantiation with a particular choice of variables for which the inequality holds,
and so the equivalence is never proved.

6 Conclusion

This paper presented a set of formally verified algorithms for global optimiza-
tion of multivariate polynomials. These algorithms, which are based on recent
Bernstein polynomial techniques, are the building blocks of proof strategies for
automatically finding upper and lower polynomial bounds and solving simply
quantified multivariate polynomial inequalities. For multivariate polynomial
global optimization, the verification technique presented in this paper is su-
perior to techniques based on quantifier elimination via cylindrical algebraic
decomposition. Even in the case of single variable polynomials, the proof-
producing strategy presented here may outperform a proof-producing CAD
algorithm. For instance, the following inequalities that state key bound prop-
erties of the first two Chebyshev Polynomials

∀x ∈ [−1, 1] : (2x2 − 1)2 ≤ 1,

∀x ∈ [−1, 1] : (4x3 − 3x)2 ≤ 1

are each automatically proved using the strategy bernstein in less than a
second. For comparison, they are proved in HOL Light using a CAD-based
quantifier elimination procedure in 24 and 65 seconds, respectively [15].1

1 The HOL Light times are reported for a 3GHz Pentium processor running Linux kernel
2.4.

30 César Muñoz, Anthony Narkawicz

One algorithm for variable selection for domain subdivision in the branch-
ing and bounding scheme chooses the variable for which the range between
the first and last Bernstein coefficients, when all other variables are held con-
stant, is greatest. However, as noted in [18] and [20], there are more efficient
methods for choosing these variables that have not been implemented, in-
cluding several based on derivatives. The function varsel is an input to the
algorithm in PVS, so it can facilitate any new subdivision scheme. There are
other heuristics that can be used to increase the efficiency of optimization al-
gorithms based on Bernstein polynomials, which are also described in papers
such as [18] and [20]. Some of these heuristics reduce to pruning strategies
that can be implemented through the local exit and global exit parame-
ters of the function BernMinmax. Since Theorem 9 holds for all possible inputs
of the function, the correctness property of BernMinmax is not affected by any
particular instantiation of these parameters.

From an algorithmic point of view, the performance of BernMinmax can still
be improved by using additional data structures that cache values involved
in the computation of subdivlmulti and subdivrmulti. The definition of
these data structures is not difficult but they require modifications to the
formalization that add complexity to an already technically complex proof.
These enhancements are left for future work.

As explained in Section 5.3, a bottleneck in the logical steps performed
by the strategy bernstein is the equivalence proof between a polynomial
expression in the PVS language and its formal representation. This proof re-
quires several symbolic manipulations that in many cases are slower than the
actual computation of the function BernMinmax. Future work will look into
developing strategies inspired by symbolic execution techniques to improve
the performance of these types of equivalence proofs.

Despite all the possible improvements, it is important to note that the
perfomance of the algorithms presented in this paper cannot be compared with
similar algorithms implemented in a programming language such as C++ with
floating point computations. For instance, the tool RealPaver [10], which solves
non-linear constraint satisfaction problems over the real numbers using branch-
and-prune interval analysis techniques, reduces a problem like Heart Dipole
from Section 5.3 in a few seconds. There are several reasons for this. The first
is that PVS, being a specification language, is not optimized for computation.
The second is that numerical computations in PVS are performed with infinite-
precision rational arithmetic. This is much more costly than computations
with floating point numbers in a programming language. Therefore, unlike
a programming language, there is an absolute guarantee that the results in
PVS are correct and that floating point arithemetic errors have not affected
the outcome. Finally, as opposed to RealPaver and similar constraint solvers,
the algorithms and strategies presented in this paper are backed by formal
theorems. Indeed, the proof of every proposition discharged with the strategy
bernstein can be unfolded in a proof that uses only basic deductive steps in
PVS.

Formalization of an Efficient Representation of Bernstein Polynomials 31

The mention of interval analysis in the previous paragraph is not coinci-
dence. Interval arithmetic is another well-known technique for global optimiza-
tion [16]. Indeed, the branch-and-prune techniques used in interval analysis are
very similar in spirit to the subdivision method used in algorithms based on
Bernstein polynomials. An interval arithmetic library is available in PVS [5] as
part of the PVS NASA Libraries (http://shemesh.larc.nasa.gov/fm/ftp/
larc/PVS-library/pvslib.html). That library includes strategies for com-
puting precise numerical approximations of real number expressions. Those
strategies do not perform well on polynomials with multiple variables, but
they handle real-valued functions such as logarithm, exponential, square root,
and trigonometric functions. Future work will integrate the Bernstein formal
development presented in this paper into the PVS interval arithmetic library.
This integration will take advantage of the efficient computation of bounds for
multivariate polynomials and the larger set of expressions supported through
interval arithmetic.

References

1. Akbarpour, B., Paulson, L.C.: MetiTarski: An automatic theorem prover for real-valued
special functions. Journal of Automated Reasoning 44(3), 175–205 (2010)

2. Archer, M., Di Vito, B., Muñoz, C. (eds.): Design and Application of Strategies/Tactics
in Higher Order Logics. No. NASA/CP-2003-212448, NASA, Langley Research Center,
Hampton VA 23681-2199, USA (September 2003)

3. Bertot, Y., Guilhot, F., Mahboubi, A.: A formal study of Bernstein coefficients and
polynomials. Tech. Rep. inria-005030117, INRIA (July 2010)

4. Crespo, L.G., Muñoz, C.A., Narkawicz, A.J., Kenny, S.P., Giesy, D.P.: Uncertainty anal-
ysis via failure domain characterization: Polynomial requirement functions. In: Proceed-
ings of European Safety and Reliability Conference. Troyes, France (September 2011)

5. Daumas, M., Lester, D., Muñoz, C.: Verified real number calculations: A library for
interval arithmetic. IEEE Transactions on Computers 58(2), 1–12 (February 2009)

6. de Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point implementation
of an elementary function using Gappa. IEEE Transactions on Computers 60(2), 242–
253 (February 2011)

7. Garloff, J.: Convergent bounds for the range of multivariate polynomials. In: Proceedings
of the International Symposium on interval mathematics on Interval mathematics 1985.
pp. 37–56. Springer-Verlag, London, UK (1985)

8. Garloff, J.: The Bernstein algorithm. Interval Computations 4, 154–168 (1993)
9. Garloff, J.: Application of Bernstein expansion to the solution of control problems.

Reliable Computing 6, 303–320 (2000)
10. Granvilliers, L., Benhamou, F.: RealPaver: An interval solver using constraint satisfac-

tion techniques. ACM Transactions on Mathematical Software 32(1), 138–156 (March
2006)

11. Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique. Tech-
nical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK (1995), available
on the Web as http://www.cl.cam.ac.uk/~jrh13/papers/reflect.dvi.gz

12. Kuchar, J., Yang, L.: A review of conflict detection and resolution modeling meth-
ods. IEEE Transactions on Intelligent Transportation Systems 1(4), 179–189 (December
2000)

13. Lorentz, G.G.: Bernstein Polynomials. Chelsea Publishing Company, New York, N.Y.,
second edn. (1986)

14. Mahboubi, A.: Implementing the cylindrical algebraic decomposition within the Coq
system. Mathematical Structures in Computer Science 17(1), 99–127 (February 2007)

32 César Muñoz, Anthony Narkawicz

15. McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic.
In: Nieuwenhuis, R. (ed.) Proceedings of the 20th International Conference on Au-
tomated Deduction, proceedings. Lecture Notes in Computer Science, vol. 3632, pp.
295–314 (2005)

16. Moa, B.: Interval Methods for Global Optimization. Ph.D. thesis, University of Victoria
(2007)

17. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Kapur, D.
(ed.) Proceeding of the 11th International Conference on Automated Deductioncade.
Lecture Notes in Artificial Intelligence, vol. 607, pp. 748–752. Springer (June 1992)

18. P. S. V. Nataraj, M.A.: A new subdivision algorithm for the Bernstein polynomial
approach to global optimization. International Journal of Automation and Computing
4(4), 342 (2007), http://www.ijac.net:8080/Jwk_ijac/EN/abstract/article_506.

shtml

19. Passmore, G.O., Jackson, P.B.: Combined decision techniques for the existential theory
of the reals. In: Dixon, L. (ed.) Proceedings of Calculemus/Mathematical Knowledge
Managment. pp. 122–137. No. 5625 in LNAI, Springer-Verlag (2009)

20. Ray, S., Nataraj, P.S.: An efficient algorithm for range computation of polynomials
using the Bernstein form. Journal of Global Optimization 45, 403–426 (November 2009),
http://portal.acm.org/citation.cfm?id=1644158.1644172

21. Smith, A.P.: Fast construction of constant bound functions for sparse polynomials. J.
of Global Optimization 43, 445–458 (March 2009)

22. Verschelde, J.: The PHC pack, the database of polynomial systems. Tech. rep., Uni-
veristy of Illinois, Mathematics Department, Chicago, IL (2001)

23. Zumkeller, R.: Global Optimization in Type Theory. Ph.D. thesis, École Polytechnique
Paris (2008)

